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bstract

In the first two documents [Ph. Hubert, J.J. Nguyen-Huu, B. Boulanger, E. Chapuzet, P. Chiap, N. Cohen, P.A. Compagnon, W. Dewé, M.
einberg, M. Lallier, M. Laurentie, N. Mercier, G. Muzard, C. Nivet, L. Valat, J. Pharm. Biomed. Anal. 36 (2004) 579–586; Ph. Hubert, J.J.
guyen-Huu, B. Boulanger, E. Chapuzet, P. Chiap, N. Cohen, P.A. Compagnon, W. Dewé, M. Feinberg, M. Lallier, M. Laurentie, N. Mercier, G.
uzard, C. Nivet, L. Valat, E. Rozet, J. Pharm. Biomed. Anal., in press], a recent SFSTP Commission on the validation of analytical procedure

as introduced a harmonized approach for the validation of analytical procedures. In order to complete this guide, the statistical methodology

llowing to correctly conclude about the validity of a procedure is proposed in this third part of the guide. Indeed all the steps to obtain the decision
ool namely the accuracy profile are described and illustrated step by step by a numerical example. This tool, based on the concept of total error
bias + standard deviation) build with a �-expectation tolerance interval, allows to easily take the right decision and simultaneously minimizing the
isk of the future use of the analytical procedure.

2007 Elsevier B.V. All rights reserved.
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. Introduction

All the statistical calculations necessary to implement the

oncepts presented in the parts 1 and 2 of the guide are devel-
ped in this third part [1,2]. These concepts are illustrated with
n example, with the aim to make them easier to understand
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nd put them into practice. To facilitate the understanding of
he changes as well as the interest of this new approach, the
uthors decided to address in extenso the same set of data (see
ables 1 and 2) as the one selected in the previous guide issued

n 1997 about bioanalytical methods validation [3–5]. The main
egulatory guidelines followed by this guide are as follows:
the ISO 5725 documents [6],
the ISO 17025 documents [7],
ICH documents [8],

mailto:ph.Hubert@ulg.ac.be
dx.doi.org/10.1016/j.jpba.2007.06.032
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Table 1
Calibration standards

Concentration (ng/ml) Signal (ratio)

Serie 1 Serie 2 Serie 3

25.3533 0.0485 0.0358 0.0449
25.3533 0.0448 0.0402 0.0415
48.2417 0.0959 0.1025 0.0987
48.2417 0.087 0.0993 0.0892
96.4833 0.1974 0.2046 0.2036
96.4833 0.2057 0.1996 0.2082

223.8496 0.5589 0.5371 0.5095
223.8496 0.5667 0.5066 0.5756
437.8235 1.1041 0.9963 1.1726
437.8235 1.0961 1.0568 1.1772
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64.8233 2.396 2.2877 2.4528
64.8233 2.3861 2.25 2.3147

FDA documents [9,10],
the articles referring to the Washington Conference [11,12].

It is important to remind that this approach aims at re-
pecifying the very objectives of an analytical method and its
alidation [13–16], re-focusing some validation criteria and
roposing harmonized protocols by distinguishing, in partic-
lar, diagnosis rules and decision rules. These decision rules
re based on the use of the accuracy profile, integrating in a
tatistically correct way in a single graph (or table), all the ele-
ents essential for the validation, i.e. the bias, the precision, the

isk and the quantitation limits. This approach, not only simpli-
es the validation process of an analytical procedure, but, also
llows to monitor risk related to its utilization. This method will
acilitate the understanding by everyone involved in the process.
hese documents, as a whole, represent the consensus achieved

nd define what could be reasonable expectation from an ana-
ytical procedure validation by every member of the group. All
long these works, the common focus has been to rationalize
he decision making process, to improve the validity and the

able 2
alidation standards

oncentration (ng/ml) Signal (ratio)

Serie 1 Serie 2 Serie 3

25.3533 0.0439 0.0371 0.0444
25.3533 0.0488 0.0422 0.0457
25.3533 0.048 0.0461 0.0502
25.3533 0.0484 0.0448 0.0475
48.2417 0.0949 0.0922 0.0956
48.2417 0.0927 0.0916 0.1023
48.2417 0.0887 0.0854 0.1007
48.2417 0.1015 0.0918 0.1092
37.8235 0.9873 0.9718 1.0392
37.8235 1.0136 1.0322 1.1132
37.8235 1.0288 1.0342 1.1419
37.8235 1.0173 1.0319 1.0751
38.6479 2.022 1.9252 2.1272
38.6479 1.9901 2.0284 2.2127
38.6479 2.0937 2.0127 2.2699
38.6479 2.0189 2.0273 2.2546
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ocumentation of the choices made and thus, ultimately, the
uality.

To make this process applicable at laboratory level, the prac-
ical aspect of the proposed experimental approach has also been
aken into account. In this way, the protocols lead to a sufficient
ut realistic number of experiments. Thus, the gain in quality
s obtained without detriment to the validation global cost. In a
ater part of this guide, this harmonization approach will also be
llustrated with a number of examples covering different fields
f application.

. Example

The example addressed in the bioanalytical methods valida-
ion guide published in 1997 and 1999 [3–5] corresponds to the
5 protocol of Table 3 here after and also presented in the part
of the guide [2]. The validation phase experiments must be

arried out on several series (not necessarily consecutive) and in
onditions as close as possible to those that will be met during
he routine analysis (apparatus, operators, etc.). Validation also
ims at evaluating the intermediate precision, i.e. the precision in
he same laboratory, under different conditions (days, different
olvents, different apparatus, different operators). To that end,
he use of an experimental design integrating these main sources
f variation from a series to the other is recommended. Finally,
eproducibility has not been considered in this document since
t requires several inter-laboratories trials.

. Statistics

.1. Response function

Once the experiments have been carried out and the data col-
ected, the relationship between the response (signal or response
f the apparatus) Y and the quantity (concentration) X should,
t first, be determined on the basis of the calibration standards
CSs). This relationship is characterized by a f function that must
trictly be monotonic (strictly increasing or decreasing) over the
onsidered determination interval [5,17]:

= f (X) + ε (1)

here ε∼ N(0, σ2) is the error associated to the f response
unction, commonly called residual error.

Thus, the response function must be adjusted, i.e. the param-
ters of the model must be evaluated in such a way that the
esidual error is reduced to the minimum.

Two families of functions emerge from this set: the functions
alled “linear” in their parameters and the non-linear functions.

function is called “linear” if it is a linear combination of its
arameters. It must be noted that the quadratic function, even
hough its graphic representation is not straight, is actually linear
n its parameters. If this is not the case, like for logistic func-

ions, the function is then called non-linear in its parameters. The
ay of fitting these response functions depends on this distinc-

ion. Different response functions can be considered during the
ethod validation, as illustrated in Table 4. The choice depends
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Table 3
Choice of number of calibration standards and validation standards depending on the selected protocol (see ref. [2])

Standards Concentration levels Protocol

V1 V2 V3 V4 V5

CSs without matrix Low 2 2
Mid 2 (2)a 2 (2)a

High (2)b 2 (2)b 2

CSs within matrix Low 2 2
Mid 2 (2)a (2)a

High (2)b 2 2
Additional (2)c

VSs within matrix Low 3 3 3 3 3
Mid 3 3 3 3 3
High 3 3 3 3 3

Minimum number of series 3 3 3 3 3

Total number of experiments (minimum) 33 45 39 63 45

In bold is the protocol corresponding to the example illustrated throughout this paper.
a Considering the regression model selected (for example: simple regression line), the possible suppression of the mid-range concentration level depending on

the regression model considered to express the response function (for example: model as the simple regression line). In this case, there are 39 experiments for the
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rotocols V2 (without matrix) and V5 (within matrix). There are 51 experimen
b Selection of a concentration level higher than the target concentration in ord
c Addition of a concentration level for a more complex response function (fo

n the type of method (physico-chemical, bioanalytical method,
mmunoassay, etc.).

Very likely, most of the physico-chemical methods will use
he straight line (through zero point or not). As far as bioana-
ytical methods are concerned, the quadratic function could be
onsidered in some cases, essentially because of the width of
he dosing range. In the case of an immunoassay, the four- or
ve-parameter logistic functions should be preferred. Mathe-
atical transformations could also be considered. For instance,

he natural logarithm or the square root transformations could be
pplied to the X concentration and to the Y response. However, it
s recommended to apply this kind of transformation only with
he linear models of Table 4.

.2. Response functions fitting

.2.1. Linear functions

.2.1.1. Quality of fitting and quality of results. The envisaged

pproach to fit these calibration models or response functions
s the maximum likelihood method. The maximum likelihood

ethod to assess parameters of a response function consists
n finding the parameters values maximizing the function rep-

able 4
xamples of response functions

ype Equation Parameters Linear

traight line through 0 Y =βX β Yes
traight line Y =α+βX α, β Yes
uadratic function Y =α+βX + γX2 α, β, γ Yes

our parameters logistic y = α+ δ−α
1+(x/γ)β

α, β, γ , δ No

ive parameters logistic y = α+ δ−α
[1+(x/y)β]

ψ α, β, γ , δ, ψ No
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the protocol V4.
calibrate (for example: 120% of target concentration).
ple: four-parameter logistic regression).

esenting the likelihood to observe the generated data. Two
orking hypotheses are, in theory, required: the normality of

he response at every concentration level and the homogene-
ty of the variances of the responses (homoscedasticity) in
he selected concentrations interval. In theory only, because
hat matters really, is the quality of the inverse predictions

or back-calculated values) rather than the quality of fit. Pref-
rence must be given to a model giving good results rather
han a model presenting good quality of fit, even if some
equired statistical hypothesis are to be infringed. Neverthe-
ess, in practice, both aspects – quality of results and application
f hypotheses – often go together, even if it is not possible to
eneralize.

.2.1.2. Weighting. The problem of normality of responses may
ossibly be addressed by the use of mathematical transforma-
ions as described above. In this case, only the differences in
ccuracy of the results, obtained between the different transfor-
ations, will allow deciding on the transformation that suits. The

ame applies for homoscedasticity: accuracy profiles achieved
ith and without weighting the observations, are to be com-
ared in order to decide whether weighting is potentially useful.
his approach consists in weighting every term of the likelihood

unction by a weight w that, usually, is an increasing function
f the corresponding concentration level. The weights usually
elected arew = 1/X orw = 1/X2. It must be noted thatw = 1
s equivalent to no weighting at all. Modeling the variances as
function of the concentration level allows to find an efficient

elationship of the 1/Xτ type, where τ becomes a parameter to

e assessed.

Practically, a regression line, between the natural logarithm of
ignals variances and the natural logarithm of the concentration
s fitted and this straight line slope estimation (rounded or not),
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s used as exponent τ of the inverse of the concentration to form
he weighting factor. In this case:

ijk = 1

xτ̂ijk
(2)

More simply, to avoid this variance modeling, it is possible
o consider, a priori, several values for the exponent τ, for exam-
le 1 or 2, or stated differently, weight the observations by 1/X
r 1/X2 and then compare the accuracy profiles obtained. This
pproach is practically still valid because, on the one hand, the
esults sensitivity to the different exponents τ is low and, on
he other hand, it is admitted that, for most of the analytical

ethods, the variance generally increases according to the con-
entration (quantity) or, at most, according to the square of the
oncentration (quantity). This approach will be used to analyze
he example presented here.

.2.1.3. Parameters estimation. According to the considered
inear model, the different parameters mentioned in Table 4 are
stimated as follows:

or a line through 0, with weighting :

β̂i =
∑m
j=1

∑nij
k=1wijkxijkyijk∑m

j=1
∑nij
k=1wijkx

2
ijk

(3)

ith

i ∈ [1, p] series index,
j ∈ [1, m] concentration index,
k ∈ [1, n] repetition index.

It must be noted that, obviously, this formula is interest-
ng and makes sense only if several levels of calibration are
sed to fit a straight line through 0. If, as it is frequent, only
ne level is used, then, weighting is of no interest. For the
ollowing models, only the solutions for the case where the
xperimental design is balanced are presented. In the case of an
nbalanced design, the use of specialized statistical software is
ecommended:

For a regression line:

ˆ
i = g(xijk, yijk)

g(xijk, xijk)
, α̂i = ȳi··,w − β̂ix̄i··,w (4)

or a quadratic model :

γ̂i = g(xijk, yijk)g(xijk, x2
ijk) − g(x2

ijk, yijk)g(xijk, xijk)

(g(xijk, x2
ijk))

2 − g(xijk, xijk)g(x2
ijk, x

2
ijk)

,

ˆ
i = g(x2

ijk, yijk) − γ̂ig(x2
ijk, x

2
ijk)

g(xijk, x2
ijk)

,

ˆ i = ȳi·· − β̂ix̄i·· − γ̂ix
2
i·· (5)

here

m
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(aijk, bijk) = 1∑m
j=1

∑n
k=1wijk

⎛
⎝ m∑
j=1

n∑
k=1

wijkaijkbijk

− 1∑m
j=1

∑n
k=1wijk

⎛
⎝ m∑
j=1

n∑
k=1

wijkaijk

⎞
⎠

×
⎛
⎝ m∑
j=1

n∑
k=1

wijkbijk

⎞
⎠

⎞
⎠ (6)

n which it is only necessary to replace aijk and bijk with the
rgument mentioned in the g functions, according to the model.
he estimated regression parameters obtained with the example
sing the main response functions can be found in Table 5.

.2.1.4. Residual error and determination coefficient. The
esidual variances at the different concentration levels are esti-
ated, after alignment of the observations (see Section 3.2.3),

s follows:

ˆ 2
j = 1∑p

k=1nij − p

p∑
i=1

nij∑
k=1

(yijk,c − ȳ·j·,c)2 (7)

here yijk,c is the aligned observation (response). If alignment
s not required, yijk,c is replaced by the observation yijk.
ȳj,c is the average of the aligned observation of the j level.

imilarly, ȳj,c can be replaced by ȳj if no alignment was
equired.

The degrees of freedom (d.f.) of residual error are obtained,
y series, by withdrawing from the number of observations used
n the regression, the number of parameters estimated in the

odel, i.e. 1, 2 or 3, in the case of the linear models presented
n Table 4.

In order to satisfy most of the regulatory requirements (ICH in
articular) it is also necessary to compute and report the determi-
ation coefficient for each i series. The determination coefficient
2
i expresses the part of responses total variance explained by
he model. This coefficient is often incorrectly interpreted as an
valuation of the quality of fit of a model. This is wrong and to
mpose constraints such as r2 > 0.99 is not a guarantee of quality
or the results to be achieved [17]. It will be possible to refer
o the following documents [3–5] to calculate the determination
oefficient.

.2.2. Functions non-linear in their parameters
For functions non-linear in their parameters, the fitting is

ore difficult because maximizing the likelihood function does
ot give always analytical solutions. In this case, initial values
or the different parameters are required as well as using iterative
ethods to obtain estimates. However, there is no guarantee of
nding a solution. To fit non-linear models, it is recommended

o use reference books and specialized software as well [17].
.2.3. Alignment of observations
If, for a given concentration level, the introduced quantities

re not the same from one series to the other (often for weighing
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Table 5
Regression parameters obtained for the different response functions

Model Series Intercept Slope Quad. term. Weighting factor r2 Residual d.f.

Linear 0–max Serie 1 – 2.478E−03 – 1 N/A 1
Serie 2 – 2.352E−03 – 1 N/A 1
Serie 3 – 2.471E−03 – 1 N/A 1

Linear 0–223 Serie 1 – 2.514E−03 – 1 N/A 1
Serie 2 – 2.331E−03 – 1 N/A 1
Serie 3 – 2.424E−03 – 1 N/A 1

Linear Serie 1 −1.932E−02 2.510E−03 – 1 0.9996 10
Serie 2 −1.758E−02 2.373E−03 – 1 0.9995 10
Serie 3 −1.386E−02 2.520E−03 – 1 0.9963 10

Weighted linear, 1/X Serie 1 −2.305E−02 2.523E−03 – 1/X 0.9996 10
Serie 2 −2.015E−02 2.382E−03 – 1/X 0.9995 10
Serie 3 −2.538E−02 2.558E−03 – 1/X 0.9963 10

log(X) − log(Y) Serie 1 −2.872 1.099 – 1 0.9983 10
Serie 2 −2.905 1.104 – 1 0.9953 10
Serie 3 −2.906 1.114 – 1 0.9975 10

sqrt(X) − sqrt(Y) Serie 1 −4.585E−02 5.169E−02 – 1 0.9990 10
Serie 2 −3.974E−02 5.005E−02 – 1 0.9991 10
Serie 3 −4.858E−02 5.209E−02 – 1 0.9971 10

Quadratic Serie 1 −3.389E−02 2.656E−03 −1.480E−07 1 0.9998 9
Serie 2 −2.206E−02 2.418E−03 −4.554E−08 1 0.9995 9
Serie 3 −5.271E−02 2.910E−03 −3.946E−07 1 0.9978 9

Weighted quadratic, 1/X Serie 1 −2.531E−02 2.570E−03 −6.084E−08 1/X 0.9997 9
Serie 2 −2.171E−02 2.415E−03 −4.193E−08 1/X 0.9995 9
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recommended to align them as described in the previous section.
The inverse predictions for the different regression models are
Serie 3 −3.233E−02 2.705E−0

2 = determination coefficient; d.f. = degrees of freedom.

easons that must be independent), it is necessary to carry out an
lignment on the mean concentration each time a variance must
e calculated (repeatability and intermediate precision estimate).
his consists in transforming observed instrumental responses

yijk → yijk,c) in order to align them on this mean concentra-
ion. This alignment is carried out by interpolation, by adding
o the observed response, the difference between the consid-
red response function value, at the mean concentration, and
his function value, at the introduced concentration.

In validation, the alignment applies to the responses obtained
ith the validation samples, by using the response equations
r functions achieved with the calibration standards. Thus, the
lignment of the nij repetitions of the j concentration level of the

series is carried out as follows:

ijk,c = yijk + f (x̄ij) − f (xijk) (8)

able 6
lignment rules for different response functions

Response function Alignment rule

Straight line through 0 yijk,c = yijk + β̂i[x̄ij· − xijk]
Straight line yijk,c = yijk + β̂i[x̄ij· − xijk]
Quadratic function yijk,c = yijk + β̂i[x̄ij· − xijk] + γ̂i[x̄2

ij· − x2
ijk

]

Four parameters logistic yijk,c = yijk

+ (δ̂i − α̂i)
(

1
1+(γ̂i/x̄ij·)β̂i − 1

1+(γ̂i/xijk )β̂i

)

o
a

T
C

R

S

S

Q

F

F

−1.875E−07 1/X 0.9974 9

To summarize, Table 6 give the equations to perform the
lignment for the different response functions. It must be noted
hat, even if it is mentioned in Table 6, the alignment is rarely
arried out for immunoassays and the different responses are
onsidered to come from the same concentration.

.2.4. Inverse prediction
Before carrying out the inverse predictions, i.e. computing the

ack-calculated concentrations with the response function, it is
referable to make sure that within a given concentration level,
he concentrations are all identical. If it is not the case, then it is
btained as described in Table 7. If the observations have been
ligned, yijk must be replaced with yijk,c in Table 7.

able 7
omputation of the inverse predictions for the different response functions

esponse function Calculated concentration

traight line through 0 xijk,calc = yijk

β̂i

traight line xijk,calc = yijk−α̂i
β̂i

uadratic function xijk,calc = −β̂i+
√

β̂2
i
−4γ̂i(α̂i−yijk )

2γ̂i

our parameters logistic xijk,calc = γ̂i

(
δ̂i−α̂i
yijk−α̂i − 1

)1/β̂i

ive parameters logistic xijk,calc = γ̂i

((
δ̂i−α̂i
yijk−α̂i

)1/ψi
− 1

)1/β̂i
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Table 8
Computation of the inverse prediction for transformed data with logarithm or
square root

Response
function

Calculated concentration
(logarithm)

Calculated concentration
(square root)
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traight line xijk,calc = e
ln(yijk )−âi

b̂i xijk,calc =
(√

yijk−âi
b̂i

)2

By the same way, if a transformation has been used, inverse
ransformation after this back-calculation must not be forgotten.
or instance, after a logarithm or square root transformation
f the straight line, back-calculated concentrations are made as
hown in Table 8. The inverse predictions obtained with the
ifferent response function used in the example are shown in
able 9.

.3. Estimation of trueness and precision

.3.1. Model
The estimate of the trueness and precision of the method is

arried out with the back-calculated concentrations coming from
he validation standards of the validation phase (or calibration
tandards themselves in pre-validation phase). This estimation
s carried out at each of the considered j concentration levels,
sing the following statistical models:

ijk = μj + αij + εijk (9)

n which

Xijk is the kth back-calculated concentration of the i series j
level.
μj is the mean of the back-calculated concentrations of the
j-concentration level.
αij is, at j level, the difference between the ith series average
and theμj; αij is considered as a normal random variable with
0 as average and σ2

B,j as variance.
εijk is the experimental error considered as a normal random
variable with an average of 0 and a variance of σ2

W,j .

The experimental error is supposed to be independent of the
eries. The σ2

B,j and σ2
W,j variances respectively represent the

nter-series and intra-series variances. The restricted maximum
ikelihood method is used to estimate, at every j concentration
evel the parameters of the model μj, σ2

B,j and σ2
W,j:

ˆ j = 1∑p
i=1nij

p∑
i=1

nij∑
k=1

xijk,calc (10)

SMj = 1

p− 1

p∑
i=1

nij(x̄ij·,calc − x̄·j·,calc)2 (11)

1
p∑ nij∑
SEj = ∑p
i=1nij − p

i=1 k=1

(xijk,calc − x̄ij·,calc)2 (12)

n the case of a balanced design (the repetition number is iden-
ical in every series for each concentration level), the variance

p
b
t
m

nd Biomedical Analysis 45 (2007) 82–96 87

omponents are estimated as follows for each concentration level
n being the repetition number in each series):

If MSEj < MSMj, then:

ˆ 2
W,j = MSEj (13)

ˆ 2
B,j = MSMj − MSEj

n
(14)

therwise

ˆ 2
W,j = 1

pn− 1

p∑
i=1

k∑
j=1

(xijk,calc − x̄·j·,calc)2 (15)

ˆ 2
B,j = 0 (16)

The intra-series variance estimate provides the repeatability
ariance estimate while the intra- and inter-series variances esti-
ates sum provides an estimation of the intermediate precision

ariance.

epeatability : σ̂2
Re,j = σ̂2

W,j

ntermediate precision : σ̂2
IP,j = σ̂2

W,j + σ̂2
B,j (17)

Table 10 gives the results of precision obtained from the
xample with the different response functions tested.

.3.2. Maximum likelihood and least squares
For an unbalanced design, there is no analytical solution to

btain parameters estimators. An iterative method has to be used.
his case is relatively rare as a validation is often planned in order

o obtain the same repetition number in every series. However,
ome data may be missing and, as a result, the experimental
esign could become unbalanced. In this case, using statistical
oftware is recommended and preferred to the classical, called
east squares methods, given that, as it is known, the least square
stimators are biased in the case of unbalanced designs. The
aximum likelihood estimators, that are the standards and only

he correct ones, are equal to the least squares estimators only
n the case of a balanced experimental design. This condition
as been ignored in the past, for practical calculation reasons
nd, too often, it has been implicitly understood that these two
ypes of estimators were equivalent under any condition. This
s not the case and the present availability of computers and
ppropriate software does not justify any longer this difference to
till be ignored. This is the reason why we recommend the use of
aximum likelihood estimators to validate analytical methods.

.3.3. Trueness
The trueness of an analytical procedure (as opposed to accu-

acy of a result) expresses the closeness of agreement between
he average (as opposed to one single observation) of the tri-
ls results with the method and the accepted reference value,
lso called conventional true value [6,17]. The trueness of a

rocedure (or bias), at each concentration level, is obtained
y calculating the difference between the introduced concen-
rations (arithmetic) mean x̄j and the calculated concentrations
ean μ̂j . The bias can be expressed in absolute or relative terms
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Table 9
Inverse predictions (ng/ml) obtained with the main response functions tested

Sample number Series Concentration (ng/ml) Response (ratio) Linear 0–max Linear 0–223 Linear Weighted linear log sqrt Quadratic Weighted quadratic

VAL01 Serie 1 25.3533 0.0439 17.71 17.46 25.19 26.54 23.9 24.41 29.33 26.94
VAL02 Serie 1 25.3533 0.0488 19.69 19.41 27.14 28.48 26.32 26.63 31.18 28.85
VAL03 Serie 1 25.3533 0.048 19.37 19.09 26.82 28.17 25.92 26.27 30.88 28.54
VAL04 Serie 1 25.3533 0.0484 19.53 19.25 26.98 28.33 26.12 26.45 31.03 28.7
VAL05 Serie 1 48.2417 0.0949 38.29 37.75 45.5 46.76 48.21 46.88 48.62 46.82
VAL06 Serie 1 48.2417 0.0927 37.41 36.87 44.63 45.89 47.19 45.93 47.78 45.96
VAL07 Serie 1 48.2417 0.0887 35.79 35.28 43.03 44.3 45.33 44.2 46.27 44.4
VAL08 Serie 1 48.2417 0.1015 40.96 40.37 48.13 49.38 51.25 49.71 51.11 49.4
VAL09 Serie 1 437.8235 0.9873 398.4 392.7 401 400.5 406.3 404.4 393 397.7
VAL10 Serie 1 437.8235 1.0136 409 403.2 411.5 411 416.2 414.7 403.4 408.2
VAL11 Serie 1 437.8235 1.0288 415.1 409.2 417.6 417 421.8 420.6 409.4 414.2
VAL12 Serie 1 437.8235 1.0173 410.5 404.6 413 412.4 417.5 416.1 404.9 409.6
VAL13 Serie 1 838.6479 2.022 815.9 804.2 813.3 810.7 780.2 806.3 810.6 812.2
VAL14 Serie 1 838.6479 1.9901 803 791.5 800.5 798.1 769 794 797.4 799.3
VAL15 Serie 1 838.6479 2.0937 844.8 832.8 841.8 839.1 805.3 834 840.3 841.2
VAL16 Serie 1 838.6479 2.0189 814.7 803 812 809.5 779.1 805.1 809.3 810.9
VAL17 Serie 2 25.3533 0.0371 15.78 15.91 23.04 24.04 21.66 21.55 24.48 24.37
VAL18 Serie 2 25.3533 0.0422 17.95 18.1 25.19 26.18 24.34 23.99 26.59 26.48
VAL19 Serie 2 25.3533 0.0461 19.6 19.77 26.83 27.82 26.37 25.84 28.2 28.1
VAL20 Serie 2 25.3533 0.0448 19.05 19.22 26.28 27.27 25.7 25.23 27.66 27.56
VAL21 Serie 2 48.2417 0.0922 39.21 39.55 46.26 47.17 49.41 47.07 47.29 47.21
VAL22 Serie 2 48.2417 0.0916 38.95 39.29 46 46.92 49.12 46.8 47.04 46.96
VAL23 Serie 2 48.2417 0.0854 36.32 36.63 43.39 44.32 46.1 43.99 44.48 44.39
VAL24 Serie 2 48.2417 0.0918 39.04 39.38 46.09 47 49.22 46.89 47.13 47.05
VAL25 Serie 2 437.8235 0.9718 413.3 416.9 416.9 416.5 417.3 419.8 414.2 414.4
VAL26 Serie 2 437.8235 1.0322 438.9 442.8 442.3 441.8 440.7 444.9 439.6 439.8
VAL27 Serie 2 437.8235 1.0342 439.8 443.6 443.2 442.7 441.5 445.7 440.4 440.7
VAL28 Serie 2 437.8235 1.0319 438.8 442.6 442.2 441.7 440.6 444.8 439.5 439.7
VAL29 Serie 2 838.6479 1.9252 818.7 825.8 818.6 816.7 775.1 813.1 817.8 817.9
VAL30 Serie 2 838.6479 2.0284 862.6 870.1 862.1 860.1 812.6 855.5 861.9 861.9
VAL31 Serie 2 838.6479 2.0127 855.9 863.4 855.5 853.5 806.9 849.1 855.2 855.2
VAL32 Serie 2 838.6479 2.0273 862.1 869.6 861.6 859.6 812.2 855 861.4 861.4
VAL33 Serie 3 25.3533 0.0444 17.97 18.32 23.12 27.27 24.78 24.77 33.52 28.42
VAL34 Serie 3 25.3533 0.0457 18.5 18.86 23.64 27.78 25.43 25.36 33.98 28.9
VAL35 Serie 3 25.3533 0.0502 20.32 20.71 25.42 29.54 27.67 27.39 35.54 30.57
VAL36 Serie 3 25.3533 0.0475 19.23 19.6 24.35 28.48 26.33 26.18 34.6 29.57
VAL37 Serie 3 48.2417 0.0956 38.69 39.44 43.44 47.28 49.33 47.17 51.32 47.44
VAL38 Serie 3 48.2417 0.1023 41.41 42.21 46.1 49.9 52.42 50.02 53.66 49.94
VAL39 Serie 3 48.2417 0.1007 40.76 41.55 45.46 49.28 51.68 49.34 53.1 49.34
VAL40 Serie 3 48.2417 0.1092 44.2 45.05 48.83 52.6 55.58 52.94 56.07 52.5
VAL41 Serie 3 437.8235 1.0392 420.6 428.8 417.9 416.1 419.9 420.3 396.5 407.6
VAL42 Serie 3 437.8235 1.1132 450.6 459.3 447.2 445 446.6 448.8 425.2 436.6
VAL43 Serie 3 437.8235 1.1419 462.2 471.1 458.6 456.2 456.9 459.9 436.3 447.9
VAL44 Serie 3 437.8235 1.0751 435.1 443.6 432.1 430.1 432.9 434.2 410.4 421.7
VAL45 Serie 3 838.6479 2.1272 861 877.7 849.6 841.3 798.6 836.9 846.2 848.1
VAL46 Serie 3 838.6479 2.2127 895.6 912.9 883.5 874.8 827.4 869.5 884.6 884
VAL47 Serie 3 838.6479 2.2699 918.7 936.5 906.2 897.1 846.6 891.2 910.6 908.1
VAL48 Serie 3 838.6479 2.2546 912.5 930.2 900.2 891.1 841.4 885.4 903.6 901.7
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Table 10
Trueness and precision estimators obtained with the main response functions studied

Model Introduced
concentration
(ng/ml)

Mean calculated
concentration (ng/ml)

Bias
(ng/ml)

Relative bias
(%)

Recovery
(%)

Repeatability standard
deviation (ng/ml)

Between series
standard deviation
(ng/ml)

Intermediate precision
standard deviation
(ng/ml)

CV repeatability (%) CV intermediate
precision (%)

Linear 0–max 25.35 18.72 −6.629 −26.15 73.85 1.229 0.00E+00 1.229 4.846 4.846
48.24 39.25 −8.99 −18.64 81.36 1.978 1.442 2.447 4.1 5.073

437.8 427.7 −10.13 −2.313 97.69 13.5 16.13 21.03 3.083 4.803
838.6 855.5 16.82 2.005 102 21.81 37.43 43.32 2.601 5.166

Linear 0–223 25.35 18.81 −6.545 −25.81 74.19 1.24 0.00E+00 1.24 4.892 4.892
48.24 39.45 −8.794 −18.23 81.77 1.986 2.115 2.902 4.118 6.015

437.8 429.9 −7.964 −1.819 98.18 13.67 23.85 27.49 3.123 6.279
838.6 859.8 21.17 2.524 102.5 22 52.12 56.58 2.624 6.746

Linear 25.35 25.33 −2.02E−02 −7.95E−02 99.92 1.242 1.026 1.61 4.897 6.352
48.24 45.57 −2.669 −5.533 94.47 1.785 0.00E+00 1.785 3.701 3.701

437.8 428.6 −9.192 −2.099 97.9 13.29 14.04 19.33 3.035 4.414
838.6 850.4 11.77 1.404 101.4 21.49 32.26 38.76 2.563 4.622

Weighted linear, 1/X 25.35 27.49 2.138 8.434 108.4 1.234 0.8223 1.483 4.866 5.848
48.24 47.57 −0.6752 −1.4 98.6 1.93 1.646 2.537 4.001 5.259

437.8 427.6 −10.24 −2.338 97.66 13.15 13.54 18.87 3.003 4.31
838.6 846 7.325 0.8735 100.9 21.29 29.01 35.98 2.539 4.291

log(X) − log(Y) 25.35 25.38 2.49E−02 9.83E−02 100.1 1.545 0.1358 1.551 6.093 6.116
48.24 49.57 1.327 2.75 102.8 2.257 2.044 3.045 4.679 6.312

437.8 429.8 −7.985 −1.824 98.18 12.16 11.06 16.44 2.778 3.755
838.6 804.5 −34.1 −4.066 95.93 18.47 20.71 27.75 2.202 3.309

sqrt(X) − sqrt(Y) 25.35 25.34 −1.31E−02 −5.15E−02 99.95 1.409 0.7473 1.595 5.556 6.29
48.24 47.58 −0.6646 −1.378 98.62 2.092 1.701 2.696 4.337 5.589

437.8 431.2 −6.638 −1.516 98.48 12.98 13.47 18.71 2.964 4.273
838.6 841.3 2.626 0.3132 100.3 20.76 28.67 35.4 2.476 4.221

Quadratic 25.35 30.58 5.23 20.63 120.6 1.184 3.792 3.973 4.672 15.67
48.24 49.49 1.247 2.586 102.6 1.802 3.527 3.961 3.736 8.211

437.8 417.7 −20.09 −4.587 95.41 13.07 13.93 19.1 2.986 4.363
838.6 849.9 11.25 1.341 101.3 23.17 34.02 41.16 2.763 4.908

Weighted quadratic, 1/X 25.35 28.08 2.729 10.76 110.8 1.207 1.239 1.73 4.762 6.824
48.24 47.62 −0.6233 −1.292 98.71 1.874 1.651 2.498 3.885 5.177

437.8 423.2 −14.65 −3.345 96.65 13.19 12.22 17.98 3.013 4.107
838.6 850.2 11.51 1.373 101.4 22.26 32.98 39.79 2.654 4.744
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Fig. 1. Representation of individual relative errors as a function of theoretical
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oncentration obtained by the same samples but with two different response
unctions: the simple linear model (triangles) and the linear through 0 and the
ighest level 964.8233 ng/ml (circles).

r in recovery terms, compared to the introduced quantities, as
ollows:

iasj = μ̂j − x̄·j· (18)

iasj (%) = 100 × μ̂j − x̄·j·
x̄·j·

(19)

ecoveryj (%) = 100 × μ̂j

x̄·j·
(20)

Table 10 gives the results of trueness obtained from the exam-
le with the different response functions tested.

.4. Estimation of accuracy

The accuracy [6,17] of a result xi (as opposed to the analyt-
cal method) expresses the closeness of agreement between the
rial result and the accepted reference value (μ), equally called
onventionally true value, and this, for each measurement:

ccuracy = xi − μ (21)

Table 11 represents, for each model and each observation, the
easurement accuracy, in relative value, i.e.:

ccuracy (%) = xi − μ

μ
100 (22)

Note that last line in Table 11 is the maximum relative
nsigned error, observed for each model, on all the series. This
aximum value already gives an idea of the relative efficiency

f the different models. So, using the simple linear model gives
result whose maximal difference with the true value is 10.80%,
mong all the tested samples, while using the model through 0
nd the highest concentration level, gives a maximal difference

ith the true value up to 37.76%, for the same data. This simple
bservation already shows the impact of the response function
election on the accuracy of the results (Fig. 1). By means of
his simple criterion, it is already possible to see that the use of

T
c
t
a

ig. 2. Graphic of the highest and second highest maximal error in function of
he relative total error for each concentration level and for each response function
ested.

he simple linear model to calibrate data leads to more accurate
esults than the other model. This model will be preferred but
ne should then evaluate whether the results accuracy achieved
his way is satisfactory: this will be seen later. The results accu-
acy like the maximum observed error, provide indications on
he results obtained in the validation experiments.

.4.1. Total error and total error profile
Each measurement obtained reflects the true valueμ, the bias

f the method and its precision, which is expressed as follows:

xi = μ+ |bias|procedure + intermediate precisionprocedure

�
xi − μ = |bias|procedure + intermediate precisionprocedure

�
xi − μ = total errorprocedure

The total error of an analytical procedure evaluates its ability
o produce accurate results. Thus, the total error estimation of
procedure is fundamental to assess the validity of a method.
his total error, as indicated above, is the sum of trueness (bias)
nd precision (Table 12). As shown in Fig. 2, the total error
bserved with each model and for each concentration level is
losely linked to the corresponding observed maximum errors.
t is normal that the maximum error observed on a large number
f observations is noticeably bigger than the total error, given
hat these maximum errors represent rare occurrences, while the
otal error rather reflects the biggest errors that can be expected
n most cases. Should the second biggest error be considered,
hen it appears that the points are clearly distributed around the
isecting line y = x, which clearly demonstrates that the total
rror estimates reflect the biggest errors produced by the method.

hus, an analytical procedure total error is clearly a good indi-
ator of its produced results accuracy. It is for those reasons
hat we propose this criterion for a first simple assessment of an
nalytical procedure, as shown in Fig. 3.
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Table 11
Values of relative accuracy (%) obtained with the principal response functions tested for each validation sample

Series Concentration
(ng/ml)

Linear 0–high Linear 0–223 Linear Weighted
linear

log(X) − log(Y) sqrt(X) − sqrt(Y) Quadratic Weighted
quadratic

Serie 1 25.3533 −30.15 −31.13 −0.64 4.68 −5.73 −3.72 15.69 6.26
Serie 1 25.3533 −22.34 −23.44 7.05 12.33 3.81 5.04 22.98 13.79
Serie 1 25.3533 −23.60 −24.70 5.79 11.11 2.24 3.62 21.80 12.57
Serie 1 25.3533 −22.97 −24.07 6.42 11.74 3.02 4.33 22.39 13.20
Serie 1 48.2417 −20.63 −21.75 −5.68 −3.07 −0.07 −2.82 0.78 −2.95
Serie 1 48.2417 −22.45 −23.57 −7.49 −4.87 −2.18 −4.79 −0.96 −4.73
Serie 1 48.2417 −25.81 −26.87 −10.80 −8.17 −6.04 −8.38 −−4.09 −7.96
Serie 1 48.2417 −15.09 −16.32 −0.23 2.36 6.24 3.04 5.95 2.40
Serie 1 437.8235 −9.00 −10.31 −8.41 −8.52 −7.20 −7.63 −10.24 −9.16
Serie 1 437.8235 −6.58 −7.91 −6.01 −6.13 −4.94 −5.28 −7.86 −6.77
Serie 1 437.8235 −5.19 −6.54 −4.62 −4.76 −3.66 −3.93 −6.49 −5.40
Serie 1 437.8235 −6.24 −7.59 −5.67 −5.81 −4.64 −4.96 −7.52 −6.45
Serie 1 838.6479 −2.71 −4.11 −3.02 −3.33 −6.97 −3.86 −3.34 −3.15
Serie 1 838.6479 −4.25 −5.62 −4.55 −4.83 −8.30 −5.32 −4.92 −4.69
Serie 1 838.6479 0.73 −0.70 0.38 0.05 −3.98 −0.55 0.20 0.30
Serie 1 838.6479 −2.86 −4.25 −3.18 −3.48 −7.10 −4.00 −3.50 −3.31
Serie 2 25.3533 −37.76 −37.25 −9.12 −5.18 −14.57 −15.00 −3.44 −3.88
Serie 2 25.3533 −29.20 −28.61 −0.64 3.26 −4.00 −5.38 4.88 4.44
Serie 2 25.3533 −22.69 −22.02 5.82 9.73 4.01 1.92 11.23 10.83
Serie 2 25.3533 −24.86 −24.19 3.66 7.56 1.37 −0.49 9.10 8.70
Serie 2 48.2417 −18.72 −18.02 −4.11 −2.22 2.42 −2.43 −1.97 −2.14
Serie 2 48.2417 −19.26 −18.56 −4.65 −2.74 1.82 −2.99 −2.49 −2.66
Serie 2 48.2417 −24.71 −24.07 −10.06 −8.13 −4.44 −8.81 −7.80 −7.98
Serie 2 48.2417 −19.07 −18.37 −4.46 −2.57 2.03 −2.80 −2.30 −2.47
Serie 2 437.8235 −5.60 −4.78 −4.78 −4.87 −4.69 −4.12 −5.40 −5.35
Serie 2 437.8235 0.25 1.14 1.02 0.91 0.66 1.62 0.41 0.45
Serie 2 437.8235 0.45 1.32 1.23 1.11 0.84 1.80 0.59 0.66
Serie 2 437.8235 0.22 1.09 1.00 0.89 0.63 1.59 0.38 0.43
Serie 2 838.6479 −2.38 −1.53 −2.39 −2.62 −7.58 −3.05 −2.49 −2.47
Serie 2 838.6479 2.86 3.75 2.80 2.56 −3.11 2.01 2.77 2.77
Serie 2 838.6479 2.06 2.95 2.01 1.77 −3.79 1.25 1.97 1.97
Serie 2 838.6479 2.80 3.69 2.74 2.50 −3.15 1.95 2.71 2.71
Serie 3 25.3533 −29.12 −27.74 −8.81 7.56 −2.26 −2.30 32.21 12.10
Serie 3 25.3533 −27.03 −25.61 −6.76 9.57 0.30 0.03 34.03 13.99
Serie 3 25.3533 −19.85 −18.31 0.26 16.51 9.14 8.03 40.18 20.58
Serie 3 25.3533 −24.15 −22.69 −3.96 12.33 3.85 3.26 36.47 16.63
Serie 3 48.2417 −19.80 −18.25 −9.95 −1.99 2.26 −2.22 6.38 −1.66
Serie 3 48.2417 −14.16 −12.50 −4.44 3.44 8.66 3.69 11.23 3.52
Serie 3 48.2417 −15.51 −13.87 −5.77 2.15 7.13 2.28 10.07 2.28
Serie 3 48.2417 −8.38 −6.62 1.22 9.03 15.21 9.74 16.23 8.83
Serie 3 437.8235 −3.93 −2.06 −4.55 −4.96 −4.09 −4.00 −9.44 −6.90
Serie 3 437.8235 2.92 4.91 2.14 1.64 2.00 2.51 −2.88 −0.28
Serie 3 437.8235 5.57 7.60 4.75 4.20 4.36 5.04 −0.35 2.30
Serie 3 437.8235 −0.62 1.32 −1.31 −1.76 −1.12 −0.83 −6.26 −3.68
Serie 3 838.6479 2.67 4.66 1.31 0.32 −4.78 −0.21 0.90 1.13
Serie 3 838.6479 6.79 8.85 5.35 4.31 −1.34 3.68 5.48 5.41

1
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w
1
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3

t

r
p
r

c
o

Serie 3 838.6479 9.55 11.67 8.05
Serie 3 838.6479 8.81 10.92 7.34

Maximal error 37.76 37.25 10.80

As illustrated in Fig. 3, if it is desired, for instance, that the
rocedure maximum error does not exceed 20% of the true value,
hen using the linear model as response function provides us
ith the desired guarantees, given that this model presents a
0% maximum total error. This obviously is not the case with
he linear model through 0.
.4.2. Tolerance interval calculation
However, what matters in validation, is not the validity of

he results obtained by means of the calculated total error, but,

a

E

6.97 0.95 6.27 8.58 8.28
6.25 0.33 5.57 7.74 7.52

6.51 15.21 15.00 40.18 20.58

ather, the guarantee or a representation of what results will be
roduced by the same analytical procedure in the future, i.e. in
outine analysis. This is the tolerance interval role.

The parameters estimate μj, σ2
B,j and σ2

W,j , at every j con-
entration level are used to estimate the expected proportion
f observations that will fall within the predefined acceptance

cceptance [−λ, +λ], i.e.:

μ̂,σ̂{P[|X− μT| < λ]μ̂M, σ̂M} ≥ β (23)
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Table 12
Values of precision, trueness, total error and maximal error observed, obtained with the main response functions tested

Model Concentration
(ng/ml)

Intermediate
precision (ng/ml)

Trueness (ng/ml) Absolute total
error (ng/ml)

Relative total
error (%)

Maximal observed
error (%)

Linear 0–max 25.35 1.229 −6.629 7.858 31.0 37.76
48.24 2.447 −8.99 11.437 23.7 25.81

437.8 21.03 −10.13 31.16 7.1 9
838.6 43.32 16.82 60.14 7.2 9.55

Linear 0–223 25.35 1.24 −6.545 7.785 30.7 37.25
48.24 2.902 −8.794 11.696 24.2 26.87

437.8 27.49 −7.964 35.454 8.1 10.31
838.6 56.58 21.17 77.75 9.3 11.67

Linear 25.35 1.61 −2.02E−02 1.63016 6.4 9.12
48.24 1.785 −2.669 4.454 9.2 10.8

437.8 19.33 −9.192 28.522 6.5 8.41
838.6 38.76 11.77 50.53 6.0 8.05

Weighted linear, 1/X 25.35 1.483 2.138 3.621 14.3 16.51
48.24 2.537 −0.6752 3.2122 6.7 9.03

437.8 18.87 −10.24 29.11 6.6 8.52
838.6 35.98 7.325 43.305 5.2 6.97

log(X) − log(Y) 25.35 1.551 2.49E−02 1.57591 6.2 14.57
48.24 3.045 1.327 4.372 9.1 15.21

437.8 16.44 −7.985 24.425 5.6 7.2
838.6 27.75 −34.1 61.85 7.4 8.3

sqrt(X) − sqrt(Y) 25.35 1.595 −1.31E−02 1.60806 6.3 15
48.24 2.696 −0.6646 3.3606 7.0 9.74

437.8 18.71 −6.638 25.348 5.8 7.63
838.6 35.4 2.626 38.026 4.5 6.27

Quadratic 25.35 3.973 5.23 9.203 36.3 40.18
48.24 3.961 1.247 5.208 10.8 16.23

437.8 19.1 −20.09 39.19 9.0 10.24
838.6 41.16 11.25 52.41 6.2 8.58

Weighted quadratic, 1/X 25.35 1.73 2.729 4.459 17.6 20.58
48.24 2.498 −0.6233 3.1213 6.5 8.83

437.8 17.98 −14.65 32.63 7.5 9.16
838.6 39.79 11.51

Fig. 3. Graphic of the relative total error by concentration level when the
response function is the simple linear model or the linear model through 0 and
the highest level.
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However, there is no exact solution to estimate this expected
roportion. The solution already proposed by several authors
1,14,16,18,19] consists in calculating the tolerance interval (�-
xpectation tolerance interval) as proposed by Mee [20]:

μ̂M,σ̂M{PX[μ̂M − kσ̂M < X < μ̂M + kσ̂M|μ̂M, σ̂M|]} = β

(24)

here k is chosen in order that the proportion of future results
xpected to fall into the interval limits, equals β.When this tol-
rance interval is totally included within the limits [−λ, +λ], i.e.
f (μ̂M − kσ̂M > −λ and μ̂M + kσ̂M < +λ), then the expected
roportion of results within the acceptance limits will be higher
han β. The estimation of trueness and precision parameters

j, σ2
B,j and σ2

W,j at each concentration level, is not an end in

tself, but a necessary step to calculate the expected proportion of
esults located within the acceptance limits. The tolerance inter-
al will be computed, at each considered concentration level
f the validation standards. In practice, the tolerance interval is
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analytical procedure potential, makes possible to appreciate the
adequacy of different practices and allows to make decisions.
For instance, one may wonder whether linear regression has to
be weighted or not, as suggested in [5] and how to weight it.

Fig. 5. Accuracy profile, at 95%, of the analytical procedure results, when the
Ph. Hubert et al. / Journal of Pharmaceut

omputed as follows [19,20], in absolute value:

μ̂j −Qt

(
ν;

1 + β

2

) √
1 + 1

pnB2
j

σ̂IP,j; μ̂j

+Qt

(
ν;

1 + β

2

) √
1 + 1

pnB2
j

σ̂IP,j

]
(25)

here

σ̂2
FI,j = σ̂2

W,j + σ̂2
B,j;

Rj = σ̂2
B,j

σ̂2
W,j

;

Bj =
√

Rj+1
nRj+1 ;

ν = (R+1)2

(R+(1/n))2/(p−1)+(1−(1/n))/pn
[21];

Qt

(
ν; 1+β

2

)
is theβ quantile of the Student t distribution with

ν degrees of freedom.

The same interval as Eq. (25), in relative scale, becomes:
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j
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+Qt

(
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) √
1 + 1

pnB2
j

CVIP,j

]
(26)

Two terms are contained in the tolerance interval: one is the
rueness and the other one, up to a factor, is the intermediate pre-
ision coefficient variation. For this reason the tolerance interval
ay be thus considered as expressing the results accuracy. But

he tolerance interval integrates an additional dimension, the
hance (or risk), for future results, conditionally to past results,
o fall within (outside) the acceptance limits. Then the method
an be considered accurate, at β chance level, for the concentra-
ion level in question, if the tolerance interval is included within
he limits [−λ, +λ] defined a priori, according to the method
bjectives. Table 13 contains the values of the tolerance inter-
als of each concentration level for all the response functions
ested in the example.

.4.3. Accuracy profile and decision

.4.3.1. Calculation. According to Eq. (26), these intervals
oundaries are

j = biasj (%) −Qt

(
ν;

1 + β

2

) √
1 + 1

pnB2
j

CVIP,j (27)

j = biasj (%) +Qt

(
ν;

1 + β

2

) √
1 + 1

pnB2
j

CVIP,j (28)

The analytical method’s accuracy profile is achieved by join-

ng, on the one hand, the lower limits Lj between themselves
L1 → L2 → · · · → Lm), and, on the other hand, the upper limits

j between themselves (U1 → U2 → · · · → Um) as represented
n Figs. 4 and 5.

m
c
a
l
q

ig. 4. Ninety-five percent accuracy profile of the analytical procedure results
hen the simple linear model is chosen as response function. Acceptance limits

re set at ±20%. The dashed line is the relative bias.

.4.3.2. Selection of the response function. When examining
ig. 6, it can be seen that, using some response functions does
ot allow the analytical procedure to achieve its objectives, given
hat, for some concentrations, the tolerance limits go beyond the
cceptance limits [−20%, +20%] for this example. In addition,
mong the acceptable response functions, it could be noted that
ome of them provide better results than others and thus will have
o be selected. We also insist on the fact that for all these models,
he determination coefficient r2 is always higher than 0.99 and
ere, unrelated to the quality of the results. Once again, we would
ike to stress, that this coefficient is not a relevant indication
f the quality of the results that the procedure will produce.
s indicated above, the accuracy profile, directly reflecting the
odel selected is the linear model through 0 and the highest (964.8233 ng/ml)
oncentration level of the calibration range. The acceptance limits have been set
t ±20% and the intersections between the accuracy profile and the acceptance
imits define the lower quantitation limit (LQL = 278 ng/ml) and Upper limits of
uantitation (UQL = 838 ng/ml).
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Table 13
Tolerance intervals obtained with each response function

Model Concentration
level (ng/ml)

Mean introduced
concentration (ng/ml)

Absolute tolerance
limits (ng/ml)

Relative tolerance
limits (%)

Linear 0–max 25.4 25.35 [16.42, 21.03] [−35.23, −17.06]
48.2 48.24 [34.16, 44.34] [−29.19, −8.084]

437.8 437.8 [378.0, 477.4] [−13.66, 9.037]
838.6 838.6 [740.8, 970.2] [−11.67, 15.68]

Linear 0–223 25.4 25.35 [16.48, 21.13] [−34.98, −16.64]
48.2 48.24 [32.83, 46.07] [−31.96, −4.501]

437.8 437.8 [356.7, 503.0] [−18.52, 14.89]
838.6 838.6 [696.2, 1023] [−16.98, 22.03]

Linear 25.4 25.35 [21.89, 28.77] [−13.64, 13.49]
48.2 48.24 [42.23, 48.92] [−12.47, 1.405]

437.8 437.8 [384.6, 472.6] [−12.15, 7.953]
838.6 838.6 [752.0, 948.9] [−10.33, 13.14]

Weighted linear, 1/X 25.4 25.35 [24.46, 30.53] [−3.534, 20.40]
48.2 48.24 [42.11, 53.03] [−12.72, 9.916]

437.8 437.8 [384.9, 470.2] [−12.08, 7.404]
838.6 838.6 [757.4, 934.6] [−9.692, 11.44]

log(X) − log(Y) 25.4 25.35 [22.47, 28.29] [−11.38, 11.58]
48.2 48.24 [42.92, 56.22] [−11.03, 16.53]

437.8 437.8 [393.9, 465.8] [−10.03, 6.384]
838.6 838.6 [740.2, 868.9] [−11.73, 3.603]

sqrt(X) − sqrt(Y) 25.4 25.35 [22.18, 28.50] [−12.52, 12.41]
48.2 48.24 [41.84, 53.32] [−13.27, 10.52]

437.8 437.8 [388.8, 473.6] [−11.20, 8.165]
838.6 838.6 [753.7, 928.8] [−10.13, 10.75]

Quadratic 25.4 25.35 [18.39, 42.78] [−27.47, 68.72]
48.2 48.24 [38.59, 60.39] [−20.00, 25.18]

437.8 437.8 [374.1, 461.3] [−14.55, 5.373]
838.6 838.6 [746.1, 953.7] [−11.04, 13.72]

Weighted quadratic, 1/X 25.4 25.35 [24.17, 31.99] [−4.648, 26.18]

W
b
a
h

F
d

48.2 48.24
437.8 437.8
838.6 838.6
ith the accuracy profiles, an answer could simply be obtained
y comparing what could be obtained in the different scenarios,
s presented in Fig. 7. As it appears, (1) weighting by 1/X or 1/X2

as very little influence, (2) even if the responses variances are

ig. 6. Superposition of the different accuracy profiles (tolerance limits) for the
ifferent response function tested. Acceptance limits are set at ±20%.
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[42.20, 53.03] [−12.52, 9.935]
[383.7, 462.7] [−12.37, 5.675]
[749.5, 950.8] [−10.63, 13.37]

ery heterogeneous from a concentration to the other, the model
ithout weighting provides very good results and, in addition,
as the advantage to be simple to use. It is this model that will
e preferred, among these three options. The question of the
ransformation to be applied to the data, or the matrix potential
ole on the quality of the results, can be examined in the same
ay, i.e. comparing the profiles, as in Figs. 6 and 7.

.5. Linearity

The linearity of an analytical procedure is its ability, within
given measurement interval, to obtain results directly propor-

ional to the quantity (e.g. concentration) in analyte within the
ample [17]. It must be reminded that the linearity requirement
pplies to the results (computed concentration = f(introduced
oncentration)), and not to the responses (signal = f(introduced
oncentration)). This is a prerequisite to the trueness assessment.

onversely, the existence of a linear relationship between the
stimated concentration and the introduced concentration does
ot mean the method has adequate trueness, e.g. is not biased.
n the case of the example using the simple linear model as a
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ig. 7. Accuracy profiles obtained with the simple linear regression (w = 1), the
eighted simple linear regression with w = 1/X and with w = 1/X2. Accep-

ance limits are set at ±20%.

esponse function, the linearity graphic is represented in Fig. 8,
ith the intercept, the slope (close to 1) and r2 estimations.

.6. The quantitation limits

The accuracy profile, built up from the expected measure-
ents tolerance intervals allows, as illustrated in Fig. 5, to decide

or which concentration levels a procedure is able to provide
esults within the acceptance limits. So, by definition, when it
ccurs, the intersection between the accuracy profile and the
cceptance limits defines the lower limit of quantitation of the
rocedure (LQL) as well as the upper limit of quantitation of
he procedure (UQL). Between these two limits, there is, obvi-
usly, the measurement interval or dosing range. Consequently,
he quantitation limits are clearly the extreme values that can be
uantified with a defined accuracy. It is to be noted that should

he simple linear model be selected, as in the case in Fig. 4,
he quantification limits then become the extreme concentration
alues investigated during the validation experiments.

ig. 8. Graphical display of the linearity of the procedure, with the estimations
f the intercept, the slope and r2.
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. Conclusion

.1. One decision, one statistics

As already underlined in the parts 1 and 2 of this guide [1,2],
he intention was not only to simplify the approach for ana-
yzing the data of the validation of an analytical procedure,
ut, even more, to make statistics appropriate and consistent
ith the objective of validation. At the end of the validation,
nly one decision has to be made – whether the analytical
rocedure is considered as valid or not – and thus, only one
tatistics has to support this decision. This is the role played by
he accuracy profile. This approach contrasts with the compli-
ated strategies that require the computation of a large number
f statistics, often badly interpreted, sometimes contradictory,
hen not erroneous. Facing this mosaic of numbers, the analyst

ounds himself alone to make a decision difficult to defend later.
ith the accuracy profile, the analytical interpretation is easy

nd all the useful required statistics, such as trueness, precision,
uantitation limits, risk, linearity, are integrated. In addition, the
ccuracy profile makes possible a visual representation of the
uture performances of the procedure.

.2. Quality of results rather than quality of statistics

Bringing back the results and their quality in the centre of our
reoccupations also constitutes something new, compared to the
pproaches recommended so far. A drift, that started a long time
go, induced the computation of numerous statistics that could
e obtained from the observations, such as trueness, precision,
ack of fit test, variances homogeneity, aberrant values, the r2,
tc., so many statistics and properties that have been thought to
onfusedly be related to the quality of the results, even though
uch a relationship has never been clearly demonstrated. In the
pproach presented here, only the quality of the future results
atters, because the very objective of an analytical procedure is

o provide results, not statistics. And the relationship described
n Eq. (23) is the very relationship that correctly links statistics
ith results.

.3. Customer and laboratory risks controlled

New dimensions are also introduced in this guide: the notions
f risks and in particular the customer risk—i.e. the user of the
esults. Actually, guides such as the ICH Q2R1 one [8], are
ocusing their attention on the quality of the analytical pro-
edure, by calculating analytical performance criteria such as
rocedure trueness and precision. But almost nothing is pro-
osed, in clear terms, to assess the quality of the results produced
y a procedure: and yet, this is the only objective of an analyt-
cal procedure. It is too often implicitly understood that, if the
rocedure is “good”, then the results it will produce will be
good”. Formally, it is not true and no guarantee can be given.

onversely, if it is possible to demonstrate that the results are
good”, then they can only be obtained by a “good” procedure,
t is exactly the approach adopted in this guide. The fundamental
nd practical consequence is, if it is possible to demonstrate by
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sing accuracy profiles, that the results are good, then automat-
cally, all the performance criteria that must be calculated and
eported to meet the regulatory requirements will also be met.
hus, the advantage is double: understanding the results quality
nd meeting the regulatory requirements.

.4. Generalization to any types of methods

Finally, as it will be seen in part 4 of this guide, this approach
pplies to any type of analytical procedures. Indeed, there is no
eason why the way of assessing quantitative procedure results is
ifferent according to the very nature of the procedure, physico-
hemical or biological. Some technical aspects can vary, the
esponse functions for instance, but, finally, the ending point is
dentical: the accuracy profile of the results.
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Cohen, P.A. Compagnon, W. Dewé, M. Feinberg, M. Lallier, M. Laurentie,
N. Mercier, G. Muzard, C. Nivet, L. Valat, E. Rozet, J. Pharm. Biomed.
Anal. 45 (2007) 70–81.

[3] E. Chapuzet, N. Mercier, S. Bervioas-Martin, B. Boulanger, P. Cheva-
lier, P. Chiap, D. Grandjean, Ph. Hubert, P. Lagorce, M. Lallier, M.C.

Laparra, M. Laurentie, J.C. Nivet, STP Pharma Prat. 7 (1997) 169–
194.

[4] E. Chapuzet, N. Mercier, S. Bervioas-Martin, B. Boulanger, P. Chevalier,
P. Chiap, D. Grandjean, Ph. Hubert, P. Lagorce, M. Lallier, M.C. Laparra,
M. Laurentie, J.C. Nivet, STP Pharma Prat. 8 (1997) 81–107.

[
[
[

nd Biomedical Analysis 45 (2007) 82–96

[5] Ph. Hubert, P. Chiap, J. Crommen, B. Boulanger, E. Chapuzet, N. Mercier,
S. Bervoas-Martin, P. Chevalier, D. Grandjean, P. Lagorce, M. Lallier, M.C.
Laparra, M. Laurentie, J.C. Nivet, Anal. Chim. Acta 391 (1999) 135–148.

[6] ISO 5725, Accuracy (trueness and precision) of measurement methods and
results—Parts1–4, Part 6, ISO, Geneva, Switzerland, 1994.

[7] ISO/IEC 17025, General requirements for the competence of testing and
calibration laboratories, ISO, Geneva, 2000.

[8] International Conference on Harmonization (ICH) of Technical Require-
ments for Registration of Pharmaceuticals for Human Use, Topic Q2 (R1):
Validation of Analytical Procedures: Text and Methodology, Geneva, 2005.

[9] Guidance for Industry: Bioanalytical, Methods Validation for Human Stud-
ies, U.S. Department of Health and Human Services, Food and Drug
Administration, Center for Drug Evaluation and Research (CDER), 2001.

10] Guidance for Industry: Analytical, Procedures and Methods Validation
(Draft guidance), U.S. Department of Health and Human Services, Food
and Drug Administration, Center for Drug Evaluation and Research
(CDER), Center for Biologics Evaluation and Research (CBER), Août,
2000.

11] V.P. Shah, K.K. Midha, S. Dighe, I. McGilveray, J.P. Skelly, A. Yacobi, T.
Layloff, C.T. Viswanathan, C.E. Cook, R.D. McDowall, K.A. Pittman, J.
Pharm. Sci. 81 (1992) 309–312.

12] V.P. Shah, K.K. Midha, J.W.A. Findlay, H.M. Hill, J.D. Hulse, I.J.
McGilveray, G. McKay, K.J. Miller, R.N. Patnaik, M.L. Powell, A. Tonelli,
C.T. Viswanathan, A. Yacobi, Pharm. Res. 17 (2000) 1551.
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